好好卷期末数学试卷八上 好好卷八上数学题目

人教版八年级数学上册期末试卷及参

,感觉复习不怎么样的你,也不要浮躁,要知道临阵磨枪,不快也光。诚心祝愿你考场上“亮剑”,为自己,也为家人!祝你八年级数学期末考试成功!下面是我为大家精心的人教版八年级数学上册期末试卷,希望能够对您有所帮助。

好好卷期末数学试卷八上 好好卷八上数学题目好好卷期末数学试卷八上 好好卷八上数学题目


好好卷期末数学试卷八上 好好卷八上数学题目


好好卷期末数学试卷八上 好好卷八上数学题目


人教版八年级数学上册期末试题

一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个正确)

1.下列命题中,命题是()

A.9的算术平方根是3 B. 的平方根是±2

C.27的立方根是±3 D.立方根等于﹣1的实数是﹣1

2.下列命题中,命题是()

A.垂直于同一条直线的两直线平行

B.已知直线a、b、c,若a⊥b,a∥c,则b⊥c

C.互补的角是邻补角

D.邻补角是互补的角

3.下列长度的线段中,能构成直角三角形的一组是()

A. , , B.6,7,8 C.12,25,27 D.2 ,2 ,4

4.下列计算正确的是()

A. B. C.(2﹣ )(2+ )=1 D.

5.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()

A.(3,3) B.(3,﹣3) C.(6,﹣6) D.(3,3)或(6,﹣6)

6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()

A. B. C. D.

7.方程组 的解为 ,则被遮盖的两个数分别是()

A.1,2 B.5,1 C.2,﹣1 D.﹣1,9

8.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为()

A.4 B.8 C.12 D.20

9.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是()

A.∠ADC>∠AEB B.∠ADC=∠AEB

C.∠ADC<∠AEB D.大小关系不能确定

10.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约()

A.10cm B.12cm C.19cm D.20cm

二、填空题(本大题共8小题,每小题3分共24分)

11.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为件.

12.若点A(m,5)与点B(2,n)关于原点对称,则3m+2n的值为.

13.有四个实数分别为32, ,﹣23, ,请你计算其中有理数的和与无理数的积的,其结果为.

14.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.

15.等腰直角三角形ABC的直角顶点C在y轴上,AB在x轴上,且A在B的左侧,AC= ,则A点的坐标是.

16.已知 +(x+2y﹣5)2=0,则x+y=.

17.如图,点D在△ABC边BC的延长线上,DE⊥AB于E,交AC于F,∠B=50°,∠CFD=60°,则∠ACB=.

18.已知A地在B地的正南方3km,甲、乙两人同时分别从A、B两地向正北方向匀速行驶,他们与A地的距离s(km)和所行的时间t(h)之间的函数关系如图所示,当他们行进3h时,他们之间的距离为km.

三、(本大题共7小题,19题8分,第20,21,22,23,24小题各6分,25小题8分,共44分)

19.(1)计算:3 + ﹣4

(2)解方程组: .

20.如图,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.

21.已知:如图,AB∥CD,AD∥BC,∠1=50°,∠2=80°.求∠C的度数.

22.甲、乙两名同学参加学校组织的100米短跑集训,教练把10天的训练结果用折线图进行了记录.

(1)请你用已知的折线图所提供的信息完成下表:

平均数 方 10天中成绩在

15秒以下的次数

甲 15 2.6 5

乙(2)学校欲从两人中选出一人参加市中会100米比赛,请你帮助学校作出选择,并简述你的理由.

23.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:

李小波:阿姨,您好!

售货员:同学,你好,想买点什么?

李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.

售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.

根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?

24.小颖和小亮上山游玩,小颖乘缆车,小亮步行,两人相约在山顶的缆车终点会合.小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.

(1)小亮行走的总路程是m,他途中休息了min;

(2)当50≤x≤80时,求y与x的函数关系式;

(3)小颖乘缆车到达终点所用的时间是多少?当小颖到达缆车终点时,小亮行走的路程是多少?

25.已知△ABC,

(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.

(2)若D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)

(3)若D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.

人教版八年级数学上册期末试卷参

一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个正确)

1.下列命题中,命题是()

A.9的算术平方根是3 B. 的平方根是±2

C.27的立方根是±3 D.立方根等于﹣1的实数是﹣1

【考点】立方根;算术平方根;命题与定理.

【分析】分别对每个选项作出判断,找到错误的命题即为命题.

【解答】解:A、9的算术平方根是3,故A选项是真命题;

B、 =4,4的平方根是±2,故B选项是真命题;

C、27的立方根是3,故C选项是命题;

D、﹣1的立方根是﹣1,故D选项是真命题,

故选C.

【点评】本题考查了立方根和算术平方根的定义,属于基础题,比较简单.

2.下列命题中,命题是()

A.垂直于同一条直线的两直线平行

B.已知直线a、b、c,若a⊥b,a∥c,则b⊥c

C.互补的角是邻补角

D.邻补角是互补的角

【考点】命题与定理.

【分析】根据邻补角的性质及常用的知识点对各个命题进行分析,从而得到正确.

【解答】解:A、垂直于同一条直线的两直线平行,是真命题,不符合题意;

B、已知直线a、b、c,若a⊥b,a∥c,则b⊥c,是真命题,不符合题意;

C、互补的角不一定是邻补角,是命题,符合题意;

D、邻补角是互补的角,是真命题,不符合题意.

故选:C.

【点评】此题主要考查了命题与定理,熟练掌握相关定理是解题关键.

3.下列长度的线段中,能构成直角三角形的一组是()

A. , , B.6,7,8 C.12,25,27 D.2 ,2 ,4

【考点】勾股定理的逆定理.

【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.

【解答】解:A、( )2+( )2≠( )2,故不是直角三角形,此选项错误;

B、62+72≠82,故不是直角三角形,此选项错误;

C、122+252≠272,故不是直角三角形,此选项错误;

D、(2 )2+(2 )2=(4 )2,故是直角三角形,此选项正确.

故选:D.

【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定边后,再验证两条较小边的平方和与边的平方之间的关系,进而作出判断.

4.下列计算正确的是()

A. B. C.(2﹣ )(2+ )=1 D.

【考点】二次根式的加减法;二次根式的性质与化简;二次根式的乘除法.

【分析】根据二次根式的运算法则,逐一计算,再选择.

【解答】解:A、原式=2 ﹣ = ,故正确;

B、原式= = ,故错误;

C、原式=4﹣5=﹣1,故错误;

D、原式= =3 ﹣1,故错误.

故选A.

【点评】根式的加减,注意不是同类项的不能合并.计算二次根式时要注意先化简成最简二次根式再计算.

5.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()

A.(3,3) B.(3,﹣3) C.(6,﹣6) D.(3,3)或(6,﹣6)

【考点】点的坐标.

【分析】根据点P到两坐标轴的距离相等,可得|2﹣a|=|3a+6|,即可求出a的值,则点P的坐标可求.

【解答】解:∵点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,

∴|2﹣a|=|3a+6|,

∴2﹣a=±(3a+6)

解得a=﹣1或a=﹣4,

即点P的坐标为(3,3)或(6,﹣6).

故选D.

【点评】本题考查了点到两坐标轴的距离相等的特点,即点的横纵坐标的相等.

6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()

A. B. C. D.

【考点】一次函数的图象;正比例函数的性质.

【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.

【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,

∴k>0,

∵b=k>0,

∴一次函数y=kx+k的图象经过一、二、三象限.

故选A.

【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.

7.方程组 的解为 ,则被遮盖的两个数分别是()

A.1,2 B.5,1 C.2,﹣1 D.﹣1,9

【考点】二元一次方程组的解.

【专题】计算题.

【分析】把x=2代入方程组中第二个方程求出y的值,确定出方程组的解,代入个方程求出被遮住的数即可.

【解答】解:把x=2代入x+y=3中,得:y=1,

把x=2,y=1代入得:2x+y=4+1=5,

则被遮住得两个数分别为5,1,

故选B.

【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.

8.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为()

A.4 B.8 C.12 D.20

【考点】算术平均数.

【分析】只要运用求平均数公式: 即可列出关于d的方程,解出d即可.

【解答】解:∵a,b,c三数的平均数是4

∴a+b+c=12

又a+b+c+d=20

故d=8.

故选B.

【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.

9.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是()

A.∠ADC>∠AEB B.∠ADC=∠AEB

C.∠ADC<∠AEB D.大小关系不能确定

【考点】三角形的外角性质.

【分析】利用三角形的内角和为180度计算.

【解答】解:在△ADC中有∠A+∠C+∠ADC=180°,

在△AEB有∠AEB+∠A+∠B=180°,

∵∠B=∠C,

∴等量代换后有∠ADC=∠AEB.

故选B.

【点评】本题利用了三角形内角和为180度.

10.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约()

A.10cm B.12cm C.19cm D.20cm

【考点】平面展开-最短路径问题.

【分析】根据两点之间,线段最短.首先把A和B展开到一个平面内,即展开圆柱的半个侧面,得到一个矩形,然后根据勾股定理,求得蚂蚁爬行的最短路程即展开矩形的对角线的长度.

【解答】解:展开圆柱的半个侧面,得到一个矩形:矩形的长是圆柱底面周长的一半即2π=6,矩形的宽是圆柱的高即8.

根据勾股定理得:蚂蚁爬行的最短路程即展开矩形的对角线长即10.

故选A.

【点评】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.本题注意只需展开圆柱的半个侧面.

二、填空题(本大题共8小题,每小题3分共24分)

11.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为5.5件.

【考点】中位数.

【专题】应用题.

【分析】根据中位数的定义解答.把数据按大小排列,第3、4个数的平均数为中位数.

【解答】解:从小到大排列为:3,4,5,6,6,7.

八年级数学期末试卷及

数学期末考试快到了,不知道 八年级 的同学们是否准备好考试前的准备呢?下面是我为大家整编的 八年级数学 期末试卷,感谢欣赏。

八年级数学期末试卷试题

一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.

1.在平面直角坐标系中,点( , )关于 轴对称的点的坐标是( )

A.( , ) B.( , ) C.( , ) D.( , )

2.函数 中,自变量 的取值范围是( )

A. > B. C. ≥ D.

3.要判断甲、乙两队舞蹈队的身高哪队比较整齐,通常需要比较这两队舞蹈队身高的( ).

A. 方 B.中位数 C. 众数 D.平均数

4.下列说法中错误的是()

A.两条对角线互相平分的四边形是平行四边形;B.两条对角线相等的四边形是矩形;

C.两条对角线互相垂直的矩形是正方形; D.两条对角线相等的菱形是正方形.

5.已知反比例函数 ,在下列结论中,不正确的是( ).

A.图象必经过点(1,2) B. 随 的增大而减少

C.图象在、三象限 D.若 >1,则 <2

6.如图,菱形ABCD中,∠ A=60°,周长是16,则菱形的面积是()

A.16 B.16 C.16 D.8

7.如图,矩形 的边 ,且 在平面直角坐标系中 轴的正半轴上,点 在点 的左侧,直线 经过点 (3,3)和点 ,且 .将直线 沿 轴向下平移得到直线 ,若点 落在矩形 的内部,则 的取值范围是()

A. B. C. D.

二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.

8.化简: .

9.将0.000000123用科学记数法表示为 .

10.在□ABCD中,∠A:∠B=3:2,则∠D =度.

11.一次函数 的图象如图所示,当 时, 的取值范围是.

12.某校为了发展校园 足球 运动,组建了校足球队,队员年龄分布如右上图所示,则这些队员年龄的众数是.

13.化简: =.

14.若点M(m,1)在反比例函数 的图象上,则m =.

15.直线 与 轴的交点坐标为 .

16.在平面直角坐标系中,正方形 的顶点 、 、 的坐标分别为(﹣1,1)、

(﹣1,﹣1)、(1,﹣1),则顶点 的坐标为.

17.如图,在△ABC中,BC =10,AB = 6,AC = 8,P为

边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的

中点,则(1) 度;(2)AM的最小值是.

三、解答题(9题,共89分)在答题卡上相应题目的答题区域内作答.

18.(9分)计算:

19.(9分)先化简,再求值: ,其中

20.(9分)如图,在矩形 中,对角线 与 相交于点 , , ,求 的长.

21.(9分)如图,一次函数 的图象与反比例函数 的图象交于点A ,C ,交y轴于点B,交x轴于点D.

(1) 求反比例函数 和一次函数 的表达式;

(2) 连接OA,OC.求△AOC的面积.

22.(9分)某学校设立学生奖学金时规定:综合成绩者得一等奖,综合成绩包括体育成绩、德育成绩、学习成绩三项,这三项成绩分别按1︰3︰6的比例计入综合成绩.小明、小亮两位同学入围测评,他们的体育成绩、德育成绩、学习成绩如下表.请你通过计算他们的综合成绩,判断谁能拿到一等奖?

体育成绩 德育成绩 学习成绩

小明 96 94 90

小亮 90 93 92

23.(9分)某校初二年学生乘车到距学校40千米的 实践 基地进行实践.一部分学生乘旅游车,另一部分学生乘中巴车,他们同时出发,结果乘中巴车的同学晚到8分钟.已知旅游车速度是中巴车速度的1.2倍,求中巴车的速度.

24.(9分)如图,在矩形ABCD中,AB =4cm,BC =8cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为点O.

(1)连接AF,CE,求证:四边形AFCE为菱形;

(2)求AF的长.

25.(13分)甲、乙两人从学校出发,沿相同的线路跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向体育馆,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.

(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒;

(2)求乙跑步的速度及乙在途中等候甲的时间;

(3)求乙出发多长时间次与甲相遇?

26.(13分)如图,在平面直角坐标系中,直线 : 分别与 轴、 轴交于点 、 ,且与直线 : 交于点 .

(1)点 的坐标是;点 的坐标是;点 的坐标是;

(2)若 是线段 上的点,且 的面积为12,求直线 的函数表达式;

(3)在(2)的条件下,设 是射线 上的点,在平面内是否存在点 ,使以 、 、 、 为顶点的四边形是菱形?若存在,直接写出点 的坐标;若不存在,请说明理由.

八年级数学期末试卷参

一、选择题(每小题3分,共21分)

1.D; 2.B; 3.A; 4.B;5.B;6.D; 7.C;

二、填空题(每小题4分,共40分)

8. ; 9. ; 10. 72; 11. ; 12. 14岁(没有单位不扣分); 13. ; 14. ;

15.(0,2); 16.(1,1); 17. (1)90;(2) 2.4

三、解答题(共89分)

18.(9分) 解:

= …………………………8分

=6………………………………………9分

19.(9分)解:

= …………3分

= …………………………5分

= …………………………………6分

当 时,原式= …………………7分

=2………………………9分

20. (9分) 解:在矩形 中

,………………2分

……………………………3分

∵∴ 是等边三角形………………5分

∴ ………………………6分

在Rt 中,

………………9分

21.(9分) 解:(1)∵ 反比例函数 的图象经过点A﹙-2,-5﹚,

∴ m=(-2)×( -5)=10.

∴ 反比例函数的表达式为 . ……………………………………………………2分

∵ 点C﹙5,n﹚在反比例函数的图象上,

∴ .

∴ C的坐标为﹙5,2﹚. …………………………………………………………………3分

∵ 一次函数的图象经过点A,C,将这两个点的坐标代入 ,得

解得 ………………………………………………………5分

∴ 所求一次函数的表达式为y=x-3. …………………………………………………6分

(2) ∵ 一次函数y=x-3的图像交y轴于点B,

∴ B点坐标为﹙0,-3﹚. ………………………………………………………………7分

∴ OB=3.

∵ A点的横坐标为-2,C点的横坐标为5,

∴ S△AOC= S△AOB+ S△BOC= . ………………9分

22.(9分)解:小明的综合成绩= …………………………(4分)

小亮的综合成绩= ………………………(8分)

∵92.1>.8 , ∴小亮能拿到一等奖. …………………………………………(9分)

23.(9分)

解:设中巴车速度为 千米/小时,则旅游车的速度为 千米/小时.………1分

依题意得 ………………………5分

解得 ………………………7分

经检验 是原方程的解且符合题意………………………8分

答:中巴车的速度为50千米/小时. ………………………9分

24.(9分)(1)证明:

∵四边形ABCD是矩形,

∴AD∥BC,

∴∠AEO =∠CFO,

∵AC的垂直平分线EF,

∴AO = OC,AC⊥EF,………………………………2分

在△AEO和△CFO中

∵∴△AEO ≌△CFO(AAS),………………………………3分

∴OE = OF,

∵O A= OC,

∴四边形AECF是平行四边形,………………………………4分

∵AC⊥EF,

∴平行四边形AECF是菱形;……………………………………5分

(2)解:设AF=acm,

∵四边形AECF是菱形,

∴AF=CF=acm,…………………………………………6分

∵BC=8cm,

∴BF=(8-a)cm,

在Rt△ABF中,由勾股定理得:42+(8-a)2=a2,…………8分

a=5,即AF=5cm。………………………………………………9分

25.(13分) 解:(1)900,1.5.…………………………4分

(2)过B作BE⊥x轴于E.

甲跑500秒的路程是500×1.5=750米,……………………5分

甲跑600米的时间是(750﹣150)÷1.5=400秒,…………6分

乙跑步的速度是750÷(400﹣100)=2.5米/秒,……………7分

乙在途中等候甲的时间是500﹣400=100秒.………………8分

(3)∵D(600,900),A(100,0),B(400,750),

∴OD的函数关系式是 ……………………9分

AB的函数关系式是 ……………11分

根据题意得

解得 ,…………………………12分

∴乙出发150秒时次与甲相遇.…………13分

26. (13分)解:(1)(6,3);(12,0);(0,6);………………3分

(2)设D(x, x),

∵△COD的面积为12,

∴ ,

解得: ,

∴D(4,2),………………………………………………5分

设直线CD的函数表达式是 ,

把C(0,6),D(4,2)代入得: ,

解得: ,

则直线CD解析式为 ;……………………7分

(3)存在点Q,使以O、C、P、Q为顶点的四边形是菱形,

如图所示,分三种情况考虑:

(i)当四边形 为菱形时,由 ,得到四边形 为正方形,此时 ,即 (6,6);………………………………………………9分

(ii)当四边形 为菱形时,由 坐标为(0,6),得到 纵坐标为3,

把 代入直线 解析式 中,得: ,此时 (﹣3,3);…………11分

(iii)当四边形 为菱形时,则有 ,

此时 (3 ,﹣3 ),……………………………………13分

综上,点 的坐标是(6,6)或(﹣3,3)或(3 ,﹣3 ).

八年级数学期末试卷及相关 文章 :

1. 2016八年级数学期末试卷及

2. 2017八年级数学期末试卷及

3. 八年级数学期末测试题

4. 八年级数学上册期末试卷

5. 八年级期末数学试卷

苏教版八年级上册数学期末试卷及

精神爽,下笔如神写华章;孜孜不倦今朝梦圆。祝你 八年级 数学期末考试成功!下面是我为大家精心的苏教版八年级上册数学期末试卷,希望能够对您有所帮助。

苏教版八年级上册数学期末试题

一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项填写第3页相应答题栏内,在卷Ⅰ上答题无效)

1.如图所示4个汉字中,可以看作是轴对称图形的是()

A. B. C. D.

2.若a>0,b<﹣2,则点(a,b+2)在()

A.象限 B.第二象限 C.第三象限 D.第四象限

3.使分式 无意义的x的值是()

A.x=﹣ B.x= C.x≠﹣ D.x≠

4.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()

A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA

5.一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m的值为()

A.﹣1 B.1 C.3 D.﹣1或3

6.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说确的是()

A.甲的速度是4千米/小时 B.乙的速度是10千米/小时

C.甲比乙晚到B地3小时 D.乙比甲晚出发1小时

二、填空题(本大题共10小题,每小题2分,共20分.请将填写在第3页相应答题栏内,在卷Ⅰ上答题无效)

7.已知函数y=(n﹣2)x+n2﹣4是正比例函数,则n为.

8.点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是.

9.化简: ﹣ =.

10.已知 ,则代数式 的值为.

11.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是cm.

12.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.

13.如图,△ABC是等边三角形,点D为AC边上一点,以BD为边作等边△BDE,连接CE.若CD=1,CE=3,则BC=.

14.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是.

15.在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为cm2.

16.当x分别取﹣ 、﹣ 、﹣ 、…、﹣ 、﹣2、﹣1、0、1、2、…、2015、2016、2017时,计算分式 的值,再将所得结果相加,其和等于.

三、解答题(本大题共有9小题,共68分,解答时在试卷相应的位置上写出必要的文字说明、证明过程或演算步骤.)

17.计算: +|1+ |.

18.解方程: =1+ .

19.如图,正方形网格中的每个小正方形边长都是1.

(1)图1中已知线段AB、CD,画线段EF,使它与AB、CD组成轴对称图形(要求:画出一个即可);

(2)在图2中画出一个以格点为端点长为 的线段.

20.已知:y﹣3与x成正比例,且当x=﹣2时,y的值为7.

(1)求y与x之间的函数关系式;

(2)若点(﹣2,m)、点(4,n)是该函数图象上的两点,试比较m、n的大小,并说明理由.

21.在Rt△ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD于E,BF∥AC交CE的延长线于F.

(1)求证:△ACD≌△CBF;

(2)求证:AB垂直平分DF.

22.先化简,再求值:( ﹣ )÷ ,其中x= .

23.如图所示,“赵爽弦图”由4个全等的直角三角形拼成,在Rt△ABC中,∠ACB=90°,AC=b,BC=a,请你利用这个图形解决下列问题:

(1)证明勾股定理;

(2)说明a2+b2≥2ab及其等号成立的条件.

24.已知直线l1:y=﹣ 与直线l2:y=kx﹣ 交于x轴上的同一个点A,直线l1与y轴交于点B,直线l2与y轴的交点为C.

(1)求k的值,并作出直线l2图象;

(2)若点P是线段AB上的点且△ACP的面积为15,求点P的坐标;

(3)若点M、N分别是x轴上、线段AC上的动点(点M不与点O重合),是否存在点M、N,使得△ANM≌△AOC?若存在,请求出N点的坐标;若不存在,请说明理由.

25.在△ABC中,∠BAC=90°,AB=AC,在△ABC的外部作∠ACM,使得∠ACM= ∠ABC,点D是直线BC上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于F.

(1)如图1所示,当点D与点B重合时,延长BA,CM交点N,证明:DF=2EC;

(2)当点D在直线BC上运动时,DF和EC是否始终保持上述数量关系呢?请你在图2中画出点D运动到CB延长线上某一点时的图形,并证明此时DF与EC的数量关系.

苏教版八年级上册数学期末试卷参

一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项填写第3页相应答题栏内,在卷Ⅰ上答题无效)

1.如图所示4个汉字中,可以看作是轴对称图形的是()

A. B. C. D.

【考点】轴对称图形.

【分析】根据轴对称图形的概念求解.

【解答】解:A、是轴对称图形,故正确;

B、不是轴对称图形,故错误;

C、不是轴对称图形,故错误;

D、不是轴对称图形,故错误.

故选A.

【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.

2.若a>0,b<﹣2,则点(a,b+2)在()

A.象限 B.第二象限 C.第三象限 D.第四象限

【考点】点的坐标.

【专题】压轴题.

【分析】应先判断出所求的点的横纵坐标的符号,进而判断点所在的象限.

【解答】解:∵a>0,b<﹣2,

∴b+2<0,

∴点(a,b+2)在第四象限.故选D.

【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).

3.使分式 无意义的x的值是()

A.x=﹣ B.x= C.x≠﹣ D.x≠

【考点】分式有意义的条件.

【分析】根据分母为0分式无意义求得x的取值范围.

【解答】解:根据题意2x﹣1=0,

解得x= .

故选:B.

【点评】本题主要考查分式无意义的条件是分母为0.

4.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()

A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA

【考点】全等三角形的判定.

【专题】压轴题.

【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出.

【解答】解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;

B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;

C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;

D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.

故选:B.

【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.

5.一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m的值为()

A.﹣1 B.1 C.3 D.﹣1或3

【考点】一次函数的性质.

【分析】由(0,2)在一次函数图象上,把x=0,y=2代入一次函数解析式得到关于m的方程,求出方程的解即可得到m的值.

【解答】解:∵一次函数y=mx+|m﹣1|的图象过点(0,2),

∴把x=0,y=2代入y=mx+|m﹣1|得:|m﹣1|=2,

解得:m=3或﹣1,

∵y随x的增大而增大,

所以m>0,

所以m=3,

故选C;

【点评】此题考查了利用待定系数法求一次函数的解析式,此 方法 一般有四步:设,代,求,答,即根据函数的类型设出所求相应的解析式,把已知的点坐标代入,确定出所设的系数,把求出的系数代入所设的解析式,得出函数的解析式.

6.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说确的是()

A.甲的速度是4千米/小时 B.乙的速度是10千米/小时

C.甲比乙晚到B地3小时 D.乙比甲晚出发1小时

【考点】函数的图象.

【分析】根据图象可知,A,B两地间的路程为20千米.甲比乙早出发1小时,但晚到2小时,从甲地到乙地,甲实际用4小时,乙实际用1小时,从而可求得甲、乙两人的速度,由此信息依次解答即可.

【解答】解:A、甲的速度:20÷4=5km/h,错误;

B、乙的速度:20÷(2﹣1)=20km/h,错误;

C、甲比乙晚到B地的时间:4﹣2=2h,错误;

D、乙比甲晚晚出发的时间为1h,正确;

故选D.

【点评】此题主要考查了函数的图象,重点考查学生的读图获取信息的能力,要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.

二、填空题(本大题共10小题,每小题2分,共20分.请将填写在第3页相应答题栏内,在卷Ⅰ上答题无效)

7.已知函数y=(n﹣2)x+n2﹣4是正比例函数,则n为﹣2.

【考点】正比例函数的定义.

【分析】根据正比例函数:正比例函数y=kx的定义条件是:k为常数且k≠0,可得.

【解答】解:y=(n﹣2)x+n2﹣4是正比例函数,得

,解得n=﹣2,n=2(不符合题意要舍去).

故为:﹣2.

【点评】解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.

8.点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是(﹣3,﹣1).

【考点】点的坐标.

【分析】根据到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度,第三象限的点的横坐标与纵坐标都是负数解答.

【解答】解:∵点C到x轴的距离为1,到y轴的距离为3,且在第三象限,

∴点C的横坐标为﹣3,纵坐标为﹣1,

∴点C的坐标为(﹣3,﹣1).

故为:(﹣3,﹣1).

【点评】本题考查了点的坐标,熟记四个象限的符号特点:象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)是解题的关键.

9.化简: ﹣ = .

【考点】二次根式的加减法.

【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.

【解答】解:原式=2 ﹣

= .

故为: .

【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.

10.已知 ,则代数式 的值为7.

【考点】完全平方公式.

【专题】压轴题.

【分析】根据完全平方公式把已知条件两边平方,然后整理即可求解.

【解答】解:∵x+ =3,

∴(x+ )2=9,

即x2+2+ =9,

∴x2+ =9﹣2=7.

【点评】本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是解题的关键.

11.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是5

初二上学期期末数学试卷人教版

一、填空题(共14小题,每小题2分,满分28分)

1.如果在实数范围内有意义,那么x满足的条件__________.

2.化简:=__________.

3.计算:2﹣=__________.

4.直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为__________.

5.已知反比例函数的图象经过点(1,2),那么反比例函数的解析式是__________.

6.计算

7.方程(m+1)x2+2x﹣1=0有两个不相等的实数根,则m的范围__________.

8.某种原料价格为a元,如果连续两次以相同的百分率x提价,那么两次提价后的价格为__________.(用含a和x的代数式表示)

9.分解因式:x2﹣5x+2=__________.

10.某厂今年的产值是前年产值的翻一番,若平均年增长率为x,则可列方程__________.

11.y是x的正比例函数,当x=2时,y=,则函数解析式为__________.

12.已知y=(m﹣2)x是正比例函数,则m=__________.

13.到AOB的两边的距离相等的点的轨迹是__________.

14.如图,已知Rt△ABC中,C=90,AC=4cm,BC=3cm,现将△ABC进行折叠,使顶点A、B重合,则折痕DE=__________cm.

二、选择题:(每题3分,满分12分)

15.下列根式中,是最简根式的是()

A.B.C.D.

16.在下列方程中,是一元二次方程的是()

A.2x2=(x﹣3)(2x+1)B.+3x+4=0C.3x2=x(x﹣4)D.(x2﹣1)=0

17.如图,Rt△ABC中,C=90,CDAB于D,E是AC的中点,则下列结论中一定正确的是()

A.4=5B.1=2C.4=3D.B=2

18.设k0,那么函数y=﹣和y=在同一直角坐标系中的大致图象是()

A.B.C.D.

三、简答题:(第19-22小题,每题5分;第23-24小题,每题7分;满分34分)

19.计算:.

20.计算:(4﹣)0+[(2﹣3)2].

21.解方程:(2x+)2=12.

22.解方程:(x﹣1)2﹣2(x﹣1)=15.

23.若关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,求k的取值范围.

24.如图,是一块四边形绿地的示意图,其中AB长为24米,BC长15米,CD长为20米,DA长7米,C=90,求绿地ABCD的面积.

四、解答题:(第25-26小题,每题8分;第27小题10分,满分26分)

25.如图,OC平分AOB,P是OC上一点,D是OA上一点,E是OB上一点,且PD=PE.求证:PDO+PEO=180.

26.如图所示,已知直线与x轴、y轴分别交于A、B两点,并且与反比例函数的图象在象限交于C点,CD垂直于x轴,垂足是D,若OA=OB=OD=1;

(1)求:点A、B、C、D的坐标;

(2)求反比例函数的解析式;

(3)求△AOC的周长和面积.

27.如图,已知:在△ABC中,A=90,AB=AC=1,P是AC上不与A、C重合的一动点,PQBC于Q,QRAB于R.

(1)求证:PQ=CQ;

(2)设CP的长为x,QR的长为y,求y与x之间的函数关系式及自变量x的取值范围,并在平面直角坐标系作出函数图象.

(3)PR能否平行于BC?如果能,试求出x的值;若不能,请简述理由.

新人教版八年级上册数学期末试卷参

一、填空题(共14小题,每小题2分,满分28分)

1.如果在实数范围内有意义,那么x满足的条件x.

【考点】二次根式有意义的条件.

【分析】根据二次根式有意义的条件可得2﹣3x0,再解不等式即可.

【解答】解:由题意得:2﹣3x0,

解得:x,

故为:x.

【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.

2.化简:=3x.

【考点】二次根式的性质与化简.

【分析】根据二次根式的性质进行化简即可.

【解答】解:由题意得,x0,

则=3x,

故为:3x.

【点评】本题考查的是二次根式的化简求值,掌握a0时,=a是解题的关键.

3.计算:2﹣=.

【考点】二次根式的加减法.

【分析】先把各根式化为最简二次根式,再合并同类项即可.

【解答】解:原式=6﹣5

=.

故为:.

【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.

4.直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为4.

【考点】直角三角形斜边上的中线.

【分析】根据在直角三角形中,斜边上的中线等于斜边的一半解答即可.

【解答】解:∵CAB=90,CM=BM,

AM=BC,又AM+BC=6,

BC=4,

故为:4.

【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.

5.已知反比例函数的图象经过点(1,2),那么反比例函数的解析式是.

【考点】待定系数法求反比例函数解析式.

【分析】把(1,2)代入函数y=中可先求出k的值,那么就可求出函数解析式.

【解答】解:由题意知,k=12=2.

则反比例函数的解析式为:y=.

故为:y=.

【点评】本题考查了待定系数法求解反比例函数解析式,此为近几年中考的热点问题,同学们要熟练掌握.

6.计算

【考点】实数的运算.

【分析】首先进行分母有理化,然后进行根式的运算即可求解.

【解答】解:==(﹣)=3.

【点评】此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.注意:表示a的算术平方根.

7.方程(m+1)x2+2x﹣1=0有两个不相等的实数根,则m的范围m﹣2且m﹣1.

【考点】根的判别式;一元二次方程的定义.

【分析】由关于x的方程(m+1)x2+2x﹣1=0有两个不相等的实数根,根据△的意义得到m+10,且△0,即4+4(m+1)0,解不等式组即可得到m的取值范围.

【解答】解:∵关于x的方程(m+1)x2+2x﹣1=0有两个不相等的实数根,

m+10,且△0,即4+4(m+1)0,解得m﹣2,

m的取值范围是:m﹣2且m﹣1.

故为:m﹣2且m﹣1.

【点评】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式△=b2﹣4ac:当△0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△0,方程没有实数根.

8.某种原料价格为a元,如果连续两次以相同的百分率x提价,那么两次提价后的价格为a(1+x)2.(用含a和x的代数式表示)

【考点】列代数式.

【分析】先求出次提价以后的价格为:原价(1+提价的百分率),再根据现在的价格=次提价后的价格(1+提价的百分率)即可得出结果.

【解答】解:次提价后价格为a(1+x)元,

第二次提价是在次提价后完成的,所以应为a(1+x)(1+x)=a(1+x)2元.

故为:a(1+x)2.

【点评】本题考查根据实际问题情景列代数式,难度中等.若设变化前的量为a,平均变化率为x,则经过两次变化后的量为a(1x)2.

9.分解因式:x2﹣5x+2=(x﹣+)(x﹣﹣).

【考点】实数范围内分解因式.

【分析】首先可将原式变形为(x﹣)2﹣,再利用平方公式分解即可求得.

【解答】解:x2﹣5x+2

=x2﹣5x+﹣+2

=(x﹣)2﹣

=(x﹣+)(x﹣﹣).

故为:(x﹣+)(x﹣﹣).

【点评】本题考查了实数范围内的因式分解.注意此题将原式变形为(x﹣)2﹣是关键.

10.某厂今年的产值是前年产值的翻一番,若平均年增长率为x,则可列方程(1+x)2=2.

【考点】由实际问题抽象出一元二次方程.

【专题】增长率问题.

【分析】设平均年增长率为x,前年的产值为a,根据题意可得,今年产值(1+x)2=2今年产值,据此列方程.

【解答】解:设平均年增长率为x,前年的产值为a,

由题意得,a(1+x)2=2a,

即(1+x)2=2.

故为:(1+x)2=2.

【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.

11.y是x的正比例函数,当x=2时,y=,则函数解析式为y=x.

【考点】待定系数法求正比例函数解析式.

【分析】设y与x的解析式是y=kx,把x=2,y=代入求出k即可.

【解答】解:设y与x的解析式是y=kx,

把x=2,y=代入得:=2k,

解得k=,

即y关于x的函数解析式是y=x,

故为:y=x.

【点评】本题考查了用待定系数法求正比例函数的解析式的应用,注意:正比例函数的解析式是y=kx(k为常数,k0).

12.已知y=(m﹣2)x是正比例函数,则m=﹣2.

【考点】正比例函数的定义.

【分析】根据正比例函数的次数是1,系数不等于0列式计算即可得解.

【解答】解:根据题意得,m2﹣3=1且m﹣20,

解得m=2且m2,

所以,m=﹣2.

故为:﹣2.

【点评】本题考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k0,自变量次数为1.

13.到AOB的两边的距离相等的点的轨迹是AOB的平分线.

【考点】轨迹.

【分析】根据角的平分线就是到角的两边相等的点的轨迹,据此即可解答.

【解答】解:到AOB的两边的距离相等的点的轨迹是:AOB的平分线.

故是:AOB的平分线.

【点评】本题考查了点的轨迹,正确理解角平分线的定义是关键.

14.如图,已知Rt△ABC中,C=90,AC=4cm,BC=3cm,现将△ABC进行折叠,使顶点A、B重合,则折痕DE=1.875cm.

【考点】翻折变换(折叠问题);勾股定理;轴对称的性质;相似三角形的判定与性质.

【专题】压轴题.

【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

【解答】解:在直角△ABC中AB===5cm.则AE=AB2=2.5cm.

设DE=x,易得△ADE∽△ABC,

故有=;

=;

解可得x=1.875.

故为:1.875.

【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,实际作图形的折叠,易于找到图形间的关系.

二、选择题:(每题3分,满分12分)

15.下列根式中,是最简根式的是()

A.B.C.D.

【考点】最简二次根式.

【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.

【解答】解:A、被开方数含分母和能开得尽方的因式,不是最简二次根式;

B、被开方数含能开得尽方的因式,不是最简二次根式;

C、是最简二次根式;

D、被开方数含能开得尽方的因式,不是最简二次根式.

故选C.

【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.

16.在下列方程中,是一元二次方程的是()

A.2x2=(x﹣3)(2x+1)B.+3x+4=0C.3x2=x(x﹣4)D.(x2﹣1)=0

【考点】一元二次方程的定义.

【分析】根据一元二次方程的定义:未知数的次数是2;二次项系数不为0;整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确.

【解答】解:A、2x2=(x﹣3)(2x+1)是一元一次方程,故A错误;

B、+3x+4=0是分式方程,故B错误;

C、3x2=x(x﹣4)是一元二次方程,故C正确;

D、(x2﹣1)=0是无理方程,故D错误;

故选:C.

【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的次数是2.

17.如图,Rt△ABC中,C=90,CDAB于D,E是AC的中点,则下列结论中一定正确的是()

A.4=5B.1=2C.4=3D.B=2

【考点】直角三角形斜边上的中线.

【分析】根据直角三角形两锐角互补的性质和斜边中线的性质进行解答即可.

【解答】解:∵Rt△ABC中,C=90,

A+B=90.

∵CDAB,

5+B=90,

5=A,

∵E是AC的中点,

DE=AE,

4=A,

4=5,

故选:A.

【点评】本题考查的是直角三角形两锐角互补的性质和斜边中线的性质,掌握直角三角形斜边中线等于斜边的一半是解题的关键.

18.设k0,那么函数y=﹣和y=在同一直角坐标系中的大致图象是()

A.B.C.D.

【考点】反比例函数的图象;正比例函数的图象.

【分析】根据正比例函数y=kx的性质:k0,图象经过原点,在、三象限;反比例函数y=的性质:k0,图象在第二、四象限的双曲线可得.

【解答】解:∵k0,

﹣0,

函数y=﹣的图象经过原点,在、三象限,

∵k0,

y=的图象在第二、四象限,

故选:D.

【点评】此题主要考查了正比例函数和反比例函数的性质,关键是掌握两个函数的性质.

三、简答题:(第19-22小题,每题5分;第23-24小题,每题7分;满分34分)

19.计算:.

【考点】二次根式的乘除法.

【分析】根据二次根式的乘法法则和除法法则求解.

【解答】解:原式=

=x.

【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的乘法法则和除法法则.

20.计算:(4﹣)0+[(2﹣3)2].

【考点】实数的运算;分数指数幂;零指数幂.

【分析】分别根据0指数幂的计算法则,数的乘方及开方法则计算出各数,再根据实数混合运算的法则进行计算即可.

【解答】解:原式=+1+3﹣2

=+2+1+3﹣2

=6﹣.

【点评】本题考查的是实数的运算,熟知0指数幂的计算法则,数的乘方及开方法则是解答此题的关键.

21.解方程:(2x+)2=12.

【考点】平方根.

【分析】根据平方根的概念进行解答即可.

【解答】解:(2x+)2=12,

2x+=2,

2x=2﹣,

x1=,x2=﹣.

【点评】本题考查的是用直接方法解一元二次方程,掌握平方根的定义是解题的关键.

22.解方程:(x﹣1)2﹣2(x﹣1)=15.

【考点】解一元二次方程-因式分解法.

【专题】计算题.

【分析】先移项得到:(x﹣1)2﹣2(x﹣1)﹣15=0,然后把方程看作关于x﹣1的一元二次方程,再利用因式分解法解方程.

【解答】解:(x﹣1)2﹣2(x﹣1)﹣15=0,

[(x﹣1)﹣5][(x﹣1)+3]=0,

(x﹣1)﹣5=0或(x﹣1)+3=0,

所以x1=﹣6,x2=﹣2.

【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).

23.若关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,求k的取值范围.

【考点】根的判别式.

【专题】探究型.

【分析】先根据一元二次方程有两个不相等的实数根得出△0,再求出k的取值范围即可.

【解答】解:∵关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,

,解得k.

所以k的取值范围是k且k2.

【点评】本题考查的是一元二次方程根的判别式及一元二次方程的定义,根据题意列出关于k的不等式是解答此题的关键.

24.如图,是一块四边形绿地的示意图,其中AB长为24米,BC长15米,CD长为20米,DA长7米,C=90,求绿地ABCD的面积.

【考点】勾股定理;勾股定理的逆定理.

【分析】连接BD,先根据勾股定理求出BD的长,再由勾股定理的逆定理判定△ABD为直角三角形,则四边形ABCD的面积=直角△BCD的面积+直角△ABD的面积.

【解答】解:连接BD.如图所示:

∵C=90,BC=15米,CD=20米,

BD===25(米);

在△ABD中,∵BD=25米,AB=24米,DA=7米,

242+72=252,即AB2+BD2=AD2,

△ABD是直角三角形.

S四边形ABCD=S△ABD+S△BCD

=ABBD+BCCD

=247+1520

=84+150

=234(平方米);

即绿地ABCD的面积为234平方米.

【点评】本题考查勾股定理及其逆定理的应用.解答此题的关键是作出辅助线,构造出直角三角形,求出BD的长.

四、解答题:(第25-26小题,每题8分;第27小题10分,满分26分)

25.如图,OC平分AOB,P是OC上一点,D是OA上一点,E是OB上一点,且PD=PE.求证:PDO+PEO=180.

【考点】全等三角形的判定与性质;角平分线的性质.

【专题】证明题.

【分析】如图,作辅助线,证明△PMD≌△PNE,得到MDP=PEN,即可解决问题.

【解答】证明:如图,过点P作PMOA,PNOE;

∵OC平分AOB,

PM=PN;

在△PMD与△PNE中,

,△PMD≌△PNE(HL),

MDP=PEN;

∵MDP+ODP=180,

PDO+PEO=180.

【点评】该题主要考查了角平分线的性质、全等三角形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线;牢固掌握定理是灵活运用、解题的基础和关键.

26.如图所示,已知直线与x轴、y轴分别交于A、B两点,并且与反比例函数的图象在象限交于C点,CD垂直于x轴,垂足是D,若OA=OB=OD=1;

(1)求:点A、B、C、D的坐标;

(2)求反比例函数的解析式;

(3)求△AOC的周长和面积.

【考点】反比例函数与一次函数的交点问题.

【专题】计算题.

【分析】(1)由OA=OB=OD=1可直接得到点A、B、C、D的坐标;

(2)先利用待定系数法确定直线AB的解析式为y=x+1,由于CD垂直于x轴,垂足是D,则C点的横坐标为1,再把x=1代入y=x+1得y=2,从而确定C点坐标为(1,2),然后再利用待定系数法确定反比例函数的解析式;

(3)利用勾股定理分别计算出AC和OC,然后根据三角形的周长与面积公式分别计算△AOC的周长和面积.

【解答】解:(1)∵OA=OB=OD=1,

点A坐标为(﹣1,0),点B坐标为(0,1),点C坐标为(1,2);点D的坐标为(1,0).

(2)设直线AB的解析式为y=ax+b,

把A(﹣1,0),B(0,1)代入得,

解得,

直线AB的解析式为y=x+1,

∵CD垂直于x轴,垂足是D,

C点的横坐标为1,

把x=1代入y=x+1得y=2,

C点坐标为(1,2),

设反比例函数的解析式为y=,

把C(1,2)代入得k=12=2,

故反比例函数的解析式为y=;

(3)∵在Rt△ACD中,AD=2,CD=2,

AC==2,

∵在Rt△OCD中,OD=1,CD=2,

OC==,

△AOC的周长=OA+OC+AC=1++2;

△AOC的面积=OACD=12=1.

【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的图象的交点坐标满足两个函数的解析式;待定系数法是确定函数关系式常用的方法.也考查了勾股定理.

27.如图,已知:在△ABC中,A=90,AB=AC=1,P是AC上不与A、C重合的一动点,PQBC于Q,QRAB于R.

(1)求证:PQ=CQ;

(2)设CP的长为x,QR的长为y,求y与x之间的函数关系式及自变量x的取值范围,并在平面直角坐标系作出函数图象.

(3)PR能否平行于BC?如果能,试求出x的值;若不能,请简述理由.

【考点】动点问题的函数图象.

【专题】计算题.

【分析】(1)易得△ABC为等腰直角三角形,则B=C=45,然后利用PQCQ可得到△PCQ为等腰直角三角形,所以PQ=CQ;

(2)根据等腰直角三角形的性质得BC=AB=,CQ=PC=x,同理可证得为△BQR等腰直角三角形,则BQ=RQ=y,所以y+x=1,变形得到y=﹣x+(0

(3)由于AR=1﹣y,AP=1﹣x,则AR=1﹣(﹣x+),当AR=AP时,PR∥BC,所以1﹣(﹣x+)=1﹣x,解得x=,然后利用0

【解答】(1)证明:∵A=90,AB=AC=1,

△ABC为等腰直角三角形,

B=C=45,

∵PQCQ,

△PCQ为等腰直角三角形,

PQ=CQ;

(2)解:∵△ABC为等腰直角三角形,

BC=AB=,

∵△PCQ为等腰直角三角形,

CQ=PC=x,

同理可证得为△BQR等腰直角三角形,

BQ=RQ=y,

∵BQ+CQ=BC,

y+x=1,

y=﹣x+(0

如图,

(3)解:不能.理由如下:

∵AR=1﹣y,AP=1﹣x,

AR=1﹣(﹣x+),

当AR=AP时,PR∥BC,

即1﹣(﹣x+)=1﹣x,

解得x=,

∵0

x=舍去,

PR不能平行于BC.

【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是熟练应用等腰直角三角形的性质.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 836084111@qq.com,本站将立刻删除。